Change of variables in diferential equations

Run TMF064.Package.m first!

```
ChangeOfVariables[{D[x[t],t,t]+ 生 x[t] == 0 },
    {t->T+\beta, X[t] ->\alpha X[T]},
    {t},{x},
    {T}, {X},
    showAll = 1
]
```

The highest order of derivative is 2
Jacobian (matrix A) is (1) and its inverse is (1)
Derivative of x with respect to $\{t\}$:
$\alpha \mathrm{X}^{\prime}[\mathrm{T}]$
Derivative of x with respect to $\{t, t\}$:
$\alpha \mathbf{X}^{\prime \prime}[\mathrm{T}]$
$\left\{\alpha\left(\omega^{2} \mathbf{X}[\mathbf{T}]+\mathrm{X}^{\prime \prime}[\mathrm{T}]\right)==0\right\}$

- Example of ordinary differential equation invariant under rotation

```
ChangeOfVariables[{(x-y[x]) D[y[x], x] == (x+y[x])},
    {x->u Cos[\phi] + v[u] Sin[\phi],y[x] >-u Sin[\phi] +v[u] Cos[\phi]},
    {x}, {y},
    {u}, {v},
    showAll = 1
]
```

The highest order of derivative is 1
Jacobian (matrix A) is ($\left.\operatorname{Cos}[\phi]+\operatorname{Sin}[\phi] \mathrm{v}^{\prime}[\mathbf{u}]\right)$ and its inverse is $\left(\frac{1}{\operatorname{Cos}[\phi]+\operatorname{Sin}[\phi] \mathrm{v}^{\prime}[\mathbf{u}]}\right)$
Derivative of y with respect to $\{\mathbf{x}\}$:

$$
\begin{aligned}
& \frac{-\operatorname{Sin}[\phi]+\operatorname{Cos}[\phi] \mathbf{v}^{\prime}[\mathbf{u}]}{\operatorname{Cos}[\phi]+\operatorname{Sin}[\phi] \mathbf{v}^{\prime}[\mathbf{u}]} \\
&\left\{\frac{\mathbf{u}+\mathbf{v}[\mathbf{u}]-\mathbf{u} \mathbf{v}^{\prime}[\mathbf{u}]+\mathbf{v}[\mathbf{u}] \mathbf{v}^{\prime}[\mathbf{u}]}{\operatorname{Cos}[\phi]+\operatorname{Sin}[\phi] \mathbf{v}^{\prime}[\mathbf{u}]}=0\right\}
\end{aligned}
$$

```
ChangeOfVariables [{(x-y[x]) D[y[x], x] == (x+y[x])},
    {x->r[\phi] Cos[\phi], y[x] -> r [\phi] Sin [\phi]},
    {x}, {y},
    {\phi}, {r},
    showAll = 1
]
```

The highest order of derivative is 1
Jacobian (matrix A) is ($\left.-\mathbf{r}[\phi] \operatorname{Sin}[\phi]+\operatorname{Cos}[\phi] r^{\prime}[\phi]\right)$ and its inverse is $\left(\frac{1}{-r[\phi] \operatorname{Sin}[\phi]+\operatorname{Cos}[\phi] r^{\prime}[\phi]}\right)$ Derivative of y with respect to $\{x\}$:

$$
\begin{aligned}
& \frac{\operatorname{Cos}[\phi] r[\phi]+\operatorname{Sin}[\phi] r^{\prime}[\phi]}{-r[\phi] \operatorname{Sin}[\phi]+\operatorname{Cos}[\phi] r^{\prime}[\phi]} \\
&\left\{\frac{r[\phi]\left(r[\phi]-r^{\prime}[\phi]\right)}{r[\phi] \operatorname{Sin}[\phi]-\operatorname{Cos}[\phi] r^{\prime}[\phi]}==0\right\}
\end{aligned}
$$

- Example of ordinary differential equation invariant under Galilean transformation

```
(* in general D[y[x],x,x]==f[x, x D[y[x],x]-y[x]] *)
ChangeOfVariables[{D[y[x], x, x] == f[x, xD[y[x], x]-y[x]]},
```



```
    {x},{y},
    {X}, {Y},
    showAll = 1
]
```

The highest order of derivative is 2
Jacobian (matrix A) is (1) and its inverse is (1)
Derivative of y with respect to $\{x\}$:

$$
\epsilon+\mathrm{Y}^{\prime}[\mathrm{X}]
$$

Derivative of y with respect to $\{\mathrm{x}, \mathrm{x}\}$:

$$
\mathrm{Y}^{\prime \prime}[\mathrm{X}]
$$

$$
\left\{\mathbf{f}\left[\mathbf{X},-\mathrm{Y}[\mathrm{X}]+\mathbf{X} \mathrm{Y}^{\prime}[\mathrm{X}]\right]==\mathrm{Y}^{\prime \prime}[\mathrm{X}]\right\}
$$

- Heat equation

```
ChangeOfVariables[{D[u[x,t], x, x] == D[u[x, t], t]},
```



```
    {x, t},{u},
    {X,T},{U},
    showAll = 1
]
```

The highest order of derivative is 2
Jacobian (matrix A) is $\left(\begin{array}{cc}1 & 0 \\ -2 \in & 1\end{array}\right)$ and its inverse is $\left(\begin{array}{cc}1 & 0 \\ 2 \in & 1\end{array}\right)$
Derivative of u with respect to $\{\mathbf{x}\}$:

$$
e^{\epsilon(X-T \epsilon)}\left(\in U[X, T]+U^{(1,0)}[X, T]\right)
$$

Derivative of u with respect to $\{t\}$:

$$
e^{\epsilon(X-T \epsilon)}\left(\epsilon^{2} U[X, T]+U^{(0,1)}[X, T]+2 \in U^{(1,0)}[X, T]\right)
$$

Derivative of u with respect to $\{t, x\}$:

$$
e^{\epsilon(X-T \epsilon)}\left(\epsilon^{3} U[X, T]+\epsilon U^{(\theta, 1)}[X, T]+3 \epsilon^{2} U^{(1, \theta)}[X, T]+U^{(1,1)}[X, T]+2 \in U^{(2, \theta)}[X, T]\right)
$$

Derivative of u with respect to $\{t, t\}$:

$$
\begin{aligned}
& e^{\epsilon(X-T \epsilon)} \\
& \left(\epsilon^{4} U[X, T]+2 \epsilon^{2} U^{(0,1)}[X, T]+U^{(0,2)}[X, T]+4 \epsilon^{3} U^{(1,0)}[X, T]+4 \epsilon U^{(1,1)}[X, T]+4 \epsilon^{2} U^{(2,0)}[X, T]\right)
\end{aligned}
$$

Derivative of u with respect to $\{x, x\}$:

$$
e^{\epsilon(X-T \epsilon)}\left(\epsilon^{2} U[X, T]+2 \in U^{(1,0)}[X, T]+U^{(2,0)}[X, T]\right)
$$

Derivative of u with respect to $\{x, t\}$:

$$
\begin{aligned}
& e^{\epsilon(X-T \epsilon)}\left(\epsilon^{3} U[X, T]+\epsilon U^{(0,1)}[X, T]+3 \epsilon^{2} U^{(1,0)}[X, T]+U^{(1,1)}[X, T]+2 \in U^{(2,0)}[X, T]\right) \\
& \left\{e^{\epsilon(X-T \epsilon)}\left(U^{(0,1)}[X, T]-U^{(2,0)}[X, T]\right)==0\right\}
\end{aligned}
$$

- 3-dimensional Schrödinger equation

```
SchEq = Expand[ChangeOfVariables[
    {-1/2(D[\psi[x,y,z],x,x]+D[\psi[x,y,z],y,y]+D[\psi[x,y,z],z,z])+
        V[Sqrt[x^2+\mp@subsup{y}{}{\wedge}2+\mp@subsup{z}{^}{\wedge}2]]\psi[x,y,z]-Energy \psi[x,y,z]== 0},
    {x->r\operatorname{Sin}[0] \operatorname{Cos}[\phi],y->r\operatorname{Sin}[0]\operatorname{Sin}[\phi],z->r\operatorname{Cos}[0],
        \psi[x,y,z] ->\chi[r, 0,\phi]/r},
    {x,y,z},{\psi},
    {r, 0,\phi},{\chi},
    showAll = 0
]]
```

$\left\{2\right.$ Energy $r \chi[r, \theta, \phi]-2 r V\left[\sqrt{r^{2}}\right] \chi[r, \theta, \phi]+\frac{\operatorname{Csc}[\theta]^{2} \chi^{(\theta, 0,2)}[r, \theta, \phi]}{r}+$ $\left.\frac{\operatorname{Cot}[\theta] \chi^{(0,1, \theta)}[r, \theta, \phi]}{r}+\frac{\chi^{(0,2, \theta)}[r, \theta, \phi]}{r}+r \chi^{(2,0, \theta)}[r, \theta, \phi]==0\right\}$

Simplify[SchEq, Assumptions $\rightarrow \mathbf{r}>0$]

```
{2r r
    Cot[0] \chi}\mp@subsup{\chi}{(0,1,0)}{[r,0,\phi]+\mp@subsup{\chi}{}{(0,2,0)}[r,0,\phi]+\mp@subsup{r}{}{2}\mp@subsup{\chi}{}{(2,0,0)}[r,0,\phi]==0}
```

- Black-Scholes PDE (from Wikipedia - Change of variables (PDE)) transforms to the heat equation

```
D[V[S, t], t] + S^2 D[V[S,t],S,S]/2 + S D[V[S, t],S] - V[S, t] == 0
-V[S,t]+ V (0,1)}[S,t]+S\mp@subsup{V}{}{(1,0)}[S,t]+\frac{1}{2}\mp@subsup{S}{}{2}\mp@subsup{V}{}{(2,0)}[S,t]==
```

```
ChangeOfVariables[
    {D[V[S, t], t] + S^2 D[V[S, t], S, S]/2 + SD[V[S, t], S] - V[S, t] == 0},
    {S->Exp[x],t }->\textrm{T}-2\tau,V[S,\textrm{t}]->\operatorname{Exp}[-\textrm{x}/2-9\tau/4]\mathbf{u}[\textrm{x},\tau]}
    {S, t},{V},
    {x, \tau}, {u},
    showAll = 0
]
{\mp@subsup{e}{}{-\frac{x}{2}-\frac{9\tau}{4}}(\mp@subsup{u}{}{(0,1)}[x,\tau]-\mp@subsup{u}{}{(2,0)}[x,\tau])==0}
```

- Hamiltonian of two particles in 1D expressed in the center-of-mass system

```
ChangeOfVariables[
    {-D[\psi[X1, X2], X1, X1] / (2 * m1) - D[\psi[X1, X2], X2, X2] / (2 * m2) == 0},
    {X1 ->XT + m2 * XR / (m1 + m2), X2 ->XT - m1 * XR / (m1 + m2) , \psi[X1, X2] ->\Psi[XT, XR]},
    {X1, X2}, {\psi},
    {XT, XR}, {\Psi},
    showAll = 0
]
{((m1 + m2 ) 2 \Psi (e,2)}[\textrm{XT},\textrm{XR}]+\textrm{m}1\textrm{m}2\mp@subsup{\Psi}{}{(2,0)}[\textrm{XT},\textrm{XR}])/(m1m2(m1+m2))== 0
```

