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Theory of nuclear motion in RABBITT spectra
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Reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) is a powerful
photoelectron spectroscopy, offering direct access to internal dynamics of the target. It is being increasingly
applied to molecular systems, but a general, computationally tractable theory of RABBITT spectra in molecules
has so far been lacking. We show that under quite general assumptions, RABBITT spectra in molecules can be
expressed as a convolution of the vibronic cross-correlation functions and two-electron photoionization matrix
elements. We specialize the general expressions to the commonly encountered special cases. We expect our
theory to enable accurate modeling and interpretation of molecular RABBITT spectra in most medium-sized
molecules.
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I. INTRODUCTION

Reconstruction of attosecond beating by interference of
two-photon transitions (RABBITT) is an ingenious photoelec-
tron spectroscopy, offering direct access to the photoelectron
phases [1], and consequently to the intricate details of the elec-
tronic and nuclear dynamics in atoms and molecules [2–6].
Driven by recent improvements in experimental techniques
(see, e.g., Refs. [7,8]), RABBITT spectroscopy is being in-
creasingly applied to molecular systems, with many notable
recent theory developments (see, e.g., Refs. [4,9,10] and ref-
erences therein). An essential factor affecting all molecular
spectroscopies is nuclear motion, which, however, received
only limited attention in the literature so far [4,11,12]. This
oversight is likely partially due to the enormous cost of the
brute-force treatment of the electron-nuclear coupling in pho-
toionization, which so far limited practical calculations to
a very few nuclear degrees of freedom. A similar difficulty
arises in molecular spectroscopy of bound-to-bound transi-
tions, where it has been long recognized [13,14] that the
problem can nonetheless be made numerically tractable by
recasting it in a time-dependent form. The observable effects
of the nuclear motion are then compactly summarized by
vibronic auto- and cross-correlation functions [13,14]. The
utility of the nuclear auto- and cross-correlation functions has
also been appreciated in the strong-field and attosecond do-
main, where they have been used to describe nuclear-motion
effects in high-harmonics generation [15–17] and attosecond
electron-hole migration [18–20]. Very recently, an elegant
theory of the molecular electron-streaking spectra has been
developed [21], with the single-surface nuclear autocorrela-
tion functions taking the central role.

*serguei.patchkovskii@mbi-berlin.de

In this contribution, we extend the approach of Ref. [21]
to the theory of molecular RABBITT photoelectron spectra.
We derive a compact, general expression for the relevant
transition amplitudes in terms of vibronic cross-correlation
functions. Our treatment includes, at least in principle, all
nuclear motion effects relevant for RABBITT transitions. In
particular, it describes the effects of the coherent averaging
over the initial vibrational function, including the zero-point
effects (ZPE), the redistribution of the absorbed photon energy
between the photoelectron and internal degrees of freedom,
the effects of absorption and emission of additional IR pho-
tons by the cationic core, and the effects of the finite pulse
duration. The treatment naturally includes complex vibronic
dynamics in the vicinity of conical intersections as well.

The rest of this manuscript is organized as follows:
Sec. II develops the general theory of RABBITT spectra in
molecules. Section III considers some relevant special cases,
which allow further simplifications of the general expression.
Finally, Sec. IV summarizes the work and presents an outlook
for follow-up investigations and applications.

II. THEORY

We are interested in modeling photoelectron spectra of a
molecular system, described by a field-free, time-independent
Hamiltonian Ĥ0, produced as a result of simultaneously in-
teracting with an infrared laser field and its harmonics in
the extreme-ultraviolet (XUV) spectral range. The fields are
assumed to be sufficiently weak, so that at most second-order
interactions need to be considered (one order in IR and one in
XUV). Under these assumptions, it is sufficient to consider a
three-color field. The individual spectral components of this
field, all taken to be linearly polarized, are given by

FIR(t ) = fIR(t )�nIR cos (ωt ) (1)

Fi(t ) = fi(t )�ni cos (�it + �i ), (2)
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where i = 1, 2, �n is field polarization direction, and f (t ) is a
slowly varying envelope. The corresponding terms in the total
Hamiltonian are given by

V̂IR = 1
2 μ̂IR fIR(t )[eiωt + e−iωt ], (3)

V̂i = 1
2 μ̂i fi(t )

[
��������ei�it+i�i + e−i�it−i�i

]
, (4)

where the terms in brackets correspond to the emission (+)
and absorption (−) of a photon. We assume that the field
parameters are such that only absorption is possible for the
XUV fields (V̂i), while the IR photons can be both absorbed
and emitted. Operators μ̂ incorporate the specific form of the
field-interaction Hamiltonian and field polarization properties.
Equations (3) and (4) implicitly assume that the laser field is
treated in the length gauge and dipole approximation.

In addition to the field-free Hamiltonian Ĥ0, we will also
consider Hamiltonians ĤIR and Ĥi, defined as

ĤIR = Ĥ0 + V̂IR, (5)

Ĥi = Ĥ0 + V̂IR + V̂i, (6)

corresponding to our preferred order of treating the perturba-
tions. For each Hamiltonian Ĥa, the corresponding propagator
Ûa is symbolically given by

Ûa(t ′, t ; E ) = e−i
∫ t ′

t dt ′′(Ĥa−E ), (7)

where we have chosen to pull the rapidly oscillating phase
e−iEt out. The “characteristic energy” E is in principle arbi-
trary; however, we expect that it is selected such as to make Ûa

a slow function of time. We note that a propagator in Eq. (7)
satisfies the energy-origin transformation

Ûa(t ′, t ; E ) = ei(E−E ′ )(t ′−t )Ûa(t ′, t ; E ′). (8)

A. Wave function response to a two-color, XUV + IR, field

Our first task is to calculate the wave function response to
the combined effects of the IR and one of the XUV fields. The
overall signal is obtained by combining the response to the
separate harmonics below, in Sec. II B. We will consider only
the contribution bilinear in the two fields, and assume that the
contributions due to each field alone can be neglected (e.g.,
because they are energetically separated from the signal of in-
terest). The detailed derivation, including all the intermediate
steps, is given in the Appendixes A–C. Here, we summarize
the key expressions needed to understand the final result.

We start by treating ĤIR as the zeroth-order Hamiltonian,
and V̂i as the perturbation. The usual time-dependent pertur-
bation theory then yields [14,22,23]

∣∣� (1)
i (t )

〉 = −i
∫ t

t0

dt ′e−iEI (t−t ′ )Ûi(t, t ′; EI )V̂i(t
′)e−iEN (t ′−t0 )

× ÛIR(t ′, t0; EN ) |� (0)(t0)〉 , (9)

where EN and EI are, respectively, characteristic energies of
the system before and after XUV photon absorption, and t0 is
chosen before the start of the XUV pulse [i.e., fi(t ′ < t0) = 0].
We will also assume that the observation time t is past the end
of the laser pulse. The initial wave function |� (0)〉 is a vibronic
wave function, including both electronic and nuclear degrees
of freedom.

So far, we have avoided choosing a specific representation
of the vibronic wave functions. For the initial wave function
� (0), we use the standard adiabatic Born-Huang ansatz:

|� (0)(t )〉 =
∑

a

|ψa(r; q)〉 |χa(q, t )〉 , (10)

where ψa are the discrete, time-independent electronic states
of the neutral species, which depend on the electronic co-
ordinates r and parametrically on the nuclear coordinates q.
Time-dependent nuclear wave packets χa propagate on these
electronic surfaces. We take that the electronic states ψa and
the corresponding surfaces are available to us through some
other means. [If desired, e.g., for treating the situation where
the initial, neutral wave packet finds itself in a vicinity of
a conical intersection, Eq. (10) can be taken as a diabatic
vibronic ansatz, with minimal changes to the treatment.]

Under our assumptions, absorption of an XUV photon
brings the molecule into a highly excited electronic state, with
one of the electrons either ionized or in a Rydberg state. If we
assume that at most one electron is ionized or excited, while
the others remain tightly bound, it is natural to expand the
wave function after XUV absorption in the form

|� (1)(t )〉 =
∑

c

∫
dk |ψck (r; q)〉 |χc(q, t )〉 , (11)

where discrete index c is understood to run over the asymptot-
ically populated, tightly bound states of the residual ion, while
the general index k labels the full electronic state (continuum
or discrete) associated to this ion core. As before, functions
ψck and the corresponding energy surfaces are assumed to be
available to us.

After some tedious but straightforward manipulations, re-
lying on the set of electronic wave functions in Eqs. (10)
and (11) being complete (see Appendix A), Eq. (9) can be
rewritten in the form∣∣� (1)

i (t )
〉 = − i

2
e−i�i+iEN t0

∑
d

∫
d p e−iEI t |ψd p(r; q)〉

× |χd pi(q, t )〉 , (12)

|χd pi(q, t )〉 =
∑
a,c

∫
dk

∫ t

t0

dt ′ei(EI −EN −�i )t ′
fi(t

′)

× ûd p,ck (t, t ′; EI )μ̂ck,a |χa(q, t ′)〉 , (13)

ûd p,ck (t, t ′; EI ) = 〈ψd p(r; q)| ÛIR(t, t ′; EI ) |ψck (r; q)〉 , (14)

μ̂ck,a(q) = 〈ψck (r; q)| μ̂i |ψa(r; q)〉 . (15)

In Eq. (13), χd pi(q, t ) is the final amplitude of the ion state d
and photoelectron state p, at nuclear coordinates q and time
t , generated by the XUV field Fi. Propagator (14) describes
evolution of the initially prepared ionized (or excited) state
under the influence of the IR field. Operator μ̂ck,a is the tran-
sition dipole for ionization (or excitation) of an electronic state
|ψa(r; q)〉, forming state |ψck (r; q)〉. This operator depends
parametrically on the nuclear coordinates q.

We would now like to examine the propagator
ûd p,ck (t, t ′; EI ) of Eq. (14) a bit more closely. Without
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attempting any formal justification, we introduce the crucial
approximation of our treatment. We will assume that

ûd p,ck (t, t ′; EI ) ≈ ûp,k (t, t ′; EI − EC )ûd,c(t, t ′; EC ), (16)

ûd,c(t, t ′; EC ) = 〈ψd (r; q)| ÛIR(t, t ′; EC ) |ψc(r; q)〉 , (17)

ûp,k (t, t ′; EI − EC ) = 〈ψp(r; q)| ÛIR(t, t ′; EI − EC )

× |ψk (r; q)〉 , (18)

[ûd,c, ûp,k] = 0. (19)

In Eq. (17), EC is the characteristic energy of the cationic man-
ifold, while |ψc(r; q)〉 are Born-Oppenheimer electronic wave
functions of the cation. As before, we assume that efficient
means of evaluating Eq. (17) are available to us. Propagator
(18) could have been formally (and tautologically) defined as

ûp,k (t, t ′; EI − EC )
?= ûd p,ck (t, t ′; EI )ûc,d (t ′, t ; EC ). (20)

(Note, however, that the putative definition (20) does not sat-
isfy the commutator relation (19), except for the degenerate
case of a single-state cationic manifold.)

From Eq. (20), it is clear that in adopting Eq. (16), we
neglect the possibility of a transition in the (c, d ) mani-
fold inducing a transition in the (k, p) manifold and vice
versa. Examples of such transitions are collisionally induced
(de)excitation in the ion core, as well as shake-off and shake-
up transitions. By our initial assumptions, the two manifolds
(the compact ion core and the extended photoelectron-
Rydberg orbital) are energetically and spatially separated, so
that such transitions are expected to have low relative cross
sections. If necessary, they could be treated as higher-order
perturbations.

We should also emphasize that partitioning of the Hamilto-
nian implied by Eq. (16) does not introduce the single-particle
approximation. This can be clearly seen in the special case
where the cationic manifold consists of an isolated, nonde-
generate ground state. Then, the propagator ûd,c amounts to a
q-dependent phase change, and Eq. (16) is exact, rather than
an approximation. Indices k, p then enumerate all electronic
states in the system, both excited and ionized. The energies of
these states must, however, be taken relative to the energy of
the target state EC .

We can now evaluate the propagator of Eq. (18), treating
the IR field as a perturbation to the zeroth-order Hamiltonian.
Following the sequence of steps detailed in Appendix B, we
obtain

ûp,k,±(t, t ′; Ek ) = 1

2
e−i(Ep−Ek )t fIR(t ′) 〈ψp(r; q)| μ̂IR |ψk (r; q)〉

× ei(Ep−Ek±ω)t ′

(Ep − Ek ± ω) − i0+ , (21)

where Ek = EI − EC is the “excess” characteristic energy of
the state |ψkc〉 relative to EC , the characteristic energy of the
cation, and the index ± stands for the emission (+) or the
absorption (−) of an IR photon.

Substituting Eqs. (21) and (16) into Eqs. (12) and (13),
we finally obtain (see Appendix C) the second-order wave
function response �

(2)
i± , where we have chosen to sepa-

rate contributions due to emission and absorption of the IR
photons:∣∣� (2)

i± (t )
〉 = − i

2
e−i�i−iECt+iEN t0

∑
d

∫
d p e−iEpt |ψd p(r; q)〉

× |χ̃d pi±(q, t )〉 , (22)

|χ̃d pi±(q, t )〉 = 1

2

∑
a,c

∫ t

t0

dt ′e−iεcp,a±t ′
fi(t

′) fIR(t ′)ûd,c(t, t ′; EC )

× D̂cp,a±(q) |χa(q, t ′)〉 , (23)

εcp,a± = (�i ∓ ω) − (Ep + EC − EN ), (24)

D̂cp,a±(q) =
∫

dk
μ̂p,ckμ̂ck,a

(Ep − Ek ± ω) − i0+ , (25)

μ̂p,ck (q) = 〈ψp(r; q)| μ̂IR |ψk (r; q)〉 , (26)

where we used EI = Ek + EC , and moved the phase contribu-
tion in |χd pi〉 dependent solely on t into the definition of �

(2)
i .

The individual terms in Eqs. (22)–(26) have a transparent
physical interpretation. The quantity (Ep + EC ) is the total
electronic energy of the final state of the system. The non-
trivial dynamics in the system is described by nuclear wave
packets |χ̃d pi±〉, which propagate on ionic surface d and are
entangled with final photoelectron momentum p. The operator
D̂cp,a± is the standard electronic matrix element for two-
photon absorption. The quantity εcp,a± is the amount of energy
deposited into the nuclear degrees of freedom of the system.
Finally, Eq. (23) describes time evolution of the nuclear wave
packet on the (generally coupled) ionic energy surfaces. The
Fourier transform in Eq. (23) picks out the relevant spectral
component of the nuclear wave packet.

B. RABBITT signal: General case

Using Eqs. (22) and (23), we are ready to describe the
RABBITT sidebands. Sideband M arises due to interference
between two-photon transitions involving two neighboring
harmonics:

�1 = (M − 1)ω, (27)

�2 = (M + 1)ω. (28)

The signal at final photoelectron momentum p is given by a
sum of three contributions:

I (p) = I1−,1−(p) + I2+,2+(p) + 2� [I1−,2+(p)]. (29)

The first contribution is the photoelectron signal due to the
simultaneous absorption of an �1 and ω photons. The second
term describes absorption of an �2 and emission of ω photons.
The remaining term, which arises from the complex-conjugate
pair I1−,2+(p) + I2+,1−(p), describes the delay-dependent in-
terference.

From Eq. (22), the individual contributions are given by
(see Appendix D)

Il,r (p) = 〈
�

(2)
l (t )

∣∣p′〉 〈p|� (2)
r (t )

〉 ∣∣
p′→p

= 1

4
δ

( �p′ − �p
2π

)
ei(�l −�r )

∑
d

〈χ̃d pl (q, t )|χ̃d pr (q, t )〉 ,
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where l, r = 1−, 2+, and we assumed that the continuum
functions are normalized to δ(

�p′− �p
2π

). Any other normalization
choice will lead to an equivalent expression, provided that a
consistent choice is made in Eq. (25). We will therefore omit
the continuum normalization factor from now on.

Substituting |χ̃d pi±〉 from Eq. (23) and using completeness
relation for ûd,c (see Appendix D), we finally get

Il,r (p) = ei(�l −�r )Ĩl,r (p), (30)

where

Ĩl,r (p) = 1

16

∫ t

t0

dt ′′
∫ t

t0

dt ′e+iεp(t ′′−t ′ ) fl (t
′′) fIR(t ′′) fr (t ′) fIR(t ′)

×
∑

a,b,c,e

〈χb(q, t ′′)| D̂†
ep,bl (q)ûe,c(t ′′, t ′; EC )

× D̂cp,ar (q) |χa(q, t ′)〉 . (31)

The quantity Ĩl,r is the “intrinsic” part of the RABBITT ma-
trix element, which does not depend on the relative delay
of the XUV and the IR fields. The entire delay dependence
is encapsulated by the phase prefactor ei(�l −�r ) in Eq. (30).
As expected on physical grounds, the initial and observation
times (t0 and t) drop out of the final expression, provided
that the envelopes of all pulses are zero outside of the [t0 : t]
interval. These integration limits can therefore be replaced by
[−∞ : +∞] if desired. Equations (29)–(31) are our general-
case result for the RABBITT spectrum. Below, we consider
some of the relevant special cases.

III. RABBITT SIGNAL: SPECIAL CASES

Although the result of Eq. (31) is compact and physically
transparent, it is invokes a rather complex object: a weighted
two-time nuclear cross-correlation function [〈χb|...|χa〉]. We
would like to consider possible simplifications to Eq. (31). For
weak IR fields and short pulses, it is reasonable to neglect
vibrational excitation by the IR field, both in the neutral and
in the cationic manifolds. Then, the propagator ûe,c can be
replaced by the field-free propagator û0

e,c, which is invariant
with respect to shift of the time origin:

ûe,c(t ′′, t ′; EC ) ≈ û0
e,c(t ′′ − t ′; EC ) (32)

û0
e,c(τ ; EC ) = 〈ψe(r; q)| Û0(τ, 0; EC ) |ψc(r; q)〉 . (33)

Furthermore, the initial, neutral vibronic wave function in
many stable molecules is well represented by a single-surface
Born-Oppenheimer product, so that the a, b sums in Eq. (31)
collapse to a single, time-independent term:

|χa(q, t )〉 ≈ |χ0(q)〉 . (34)

Additionally, the characteristic decay time scale for the
cationic autocorrelation functions is often short, on the order
of a few femtoseconds or tens of femtoseconds [14,17]. On
these time scales, the difference between pulse envelopes at
t ′ and t ′′ can be neglected (the continuous wave approxima-
tion). Furthermore, in the diabatic representation, the cationic
cross-correlation functions remain small on the timescale
of the IR and XUV pulse duration, and only the diabatic

autocorrelations need to be considered:

û0
e,c(τ ; EC ) ≈ δecû0

c,c(τ ; EC ) ≡ û0
c (τ ; EC ). (35)

Applying the approximations above to the general Eq. (30),
we obtain

Il,r (p) = ei(�l −�r )Pl,r

∑
c

Mc,l,r (p), (36)

Pl,r = π

8

∫
dτ fl (τ ) fr (τ ) f 2

IR(τ ), (37)

Mc,l,r (p) = 1

2π

∫
dτe+iεpτ 〈χ0(q)| D̂†

cp,0l (q)

× û0
c (τ ; EC )D̂cp,0r (q) |χ0(q)〉 , (38)

where time integrals are over all times, and we have chosen to
apply normalization factor 1

2π
to the definition of the matrix

element Mc(p), for reasons which will become clear in the
following section. In Eq. (36), the pulse-envelope parameters
(Pl,r) are cleanly separated from the molecular factors (Mc,l,r),
while the entire time-delay dependence is encapsulated by
the phase prefactor ei(�l −�r ), similar to the familiar atomic
case [1]. While at first glance the conditions under which the
approximate Eq. (36) is obtained do appear very restrictive, a
closer examination shows that they are expected to be satisfied
for a large fraction of small, rigid molecules.

It is instructive to examine some limiting cases of Eq. (38).

A. No nuclear motion: The “atomic” case

We first consider the case of nuclear motion being en-
tirely absent in the center-of-mass coordinate system, so that
the molecule has well-defined coordinates q0, which are un-
changed by the action of the propagator û0

c . Then

Mc,l,r (p)
fixed= D̂†

cp,0l (q0)D̂cp,0r (q0)
1

2π

∫
dτe+iεpτ

= D̂†
cp,0l (q0)D̂cp,0r (q0)δ(εp). (39)

This result coincides with the familiar atomic case: The
RABBITT sidebands appear at the photoelectron energy of
Mω − IP, where IP is the ionization potential. Their width
is determined by the combined bandwidth of the XUV and
IR pulses. Obviously, no vibrational or isotope effects are
possible in this approximation.

B. Nuclear motion: Condon approximation

The next natural approximation to consider is to treat the
electronic part of the matrix element (38) as q independent:
the Condon approximation. Then

Mc,l,r (p)
Condon= D̂†

cp,0l (q0)D̂cp,0r (q0)Nc(εp), (40)

Nc(εp) = 1

2π

∫
dτe+iεpτ Ac(τ ; EC ), (41)

Ac(τ ; EC ) = 〈χ0(q)| û0
c (τ ; EC ) |χ0(q)〉 , (42)
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where Nc is the Fourier transform of nuclear autocorrela-
tion function on (diabatic) cationic surface c. The field-free
autocorrelation function is Hermitian with respect to time
reversal [14]:

Ac(−τ ) = Ac(τ )†, (43)

so that Nc is guaranteed to be real. As long as the time integra-
tion domain in Eq. (41) is not truncated, Nc is also guaranteed
to be positive semidefinite [14]:

Nc(εp) � 0. (44)

An important consequence of Eq. (44) is that vibrational
dynamics in the Condon approximation does not introduce ad-
ditional time delays in the RABBITT spectrum. Time delays
remain an exclusively electronic property in this approxima-
tion, similar to the atomic case. Nuclear motion, however,
imposes a finite, intrinsic photoelectron energy profile onto
the RABBIT spectrum. In the Condon approximation, this
profile coincides with the vibration profile in one-photon pho-
toionization spectrum at the same photoelectron energy.

Isotopic dependence can arise in two ways in this ap-
proximation. First, the initial wave packet |χ0〉 and the
propagator û0

c depend on the nuclear masses, so that the fac-
tor Nc is isotope dependent. This contribution affects the
photoelectron-energy profile, but not the time delays or

the contrast of the signal oscillations with time. Additional
isotope dependence could arise if the characteristic geome-
tries q0, where the electronic matrix elements are determined,
are not the same for the isotopomers involved.

C. Nuclear motion: Zero-point effects

In the Condon approximation [Eq. (40)], the electronic part
of the matrix element Mc,l,r is evaluated at a single, charac-
teristic geometry q0. A natural refinement is to consider the
consequences of the finite spatial extent of the wave packet, by
averaging the electronic matrix element over the initial wave
packet. All nuclear wave packets will have nonzero spatial
extent due to the effects of the zero-point motion. Vibrational
excitation will also affect the extent of the wave packet. If
the overall shape of the wave packet, apart from the central
position, is unaffected by nuclear motion, we obtain

Mc,l,r (p)
ZPE= Gc,l,r (p)Nc(εp), (45)

Gc,l,r (p) = 〈χ0(q)| D̂†
cp,0l (q)D̂cp,0r (q) |χ0(q)〉 , (46)

where Nc(εp) is given by Eq. (41) above.
For the most important special case, where |χ0〉 is the

ground-state vibrational wave function of a multidimensional
harmonic oscillator, the integral (46) can be readily evaluated.
The result is (see Appendix E)

Gc,l,r (p)
ZPE= (

D(0)
l

)†
D(0)

r +
∑

k

1

4ωk

[(
D(0)

l

)†
D(k,k)

r + 2
(
D(k)

l

)†
D(k)

r + (
D(k,k)

l

)†
D(0)

r

]

+
∑

k

3

16ω2
k

(
D(k,k)

l

)†
D(k,k)

r +
∑
k �=m

1

16ωkωm

(
D(k,k)

l

)†
D(m,m)

r +
����������������������

∑
k �=m

1

8ωkωm

(
D(k,m)

l

)†
D(k,m)

r , (47)

where D(0)
x = D̂cp,0x(q0) and D(i)

x , D(i, j)
x are its derivatives with

respect to the normal coordinates qi, q j . Quantities ωi are the
corresponding normal-node frequencies.

The last three terms in Eq. (47) are of the fourth order in q,
higher than the formal second order of the Taylor expansion
used to derive it (see Appendix E). The two terms containing
the diagonal part of the second-derivative matrix of D ensure
that the approximated Gc,l,r remains positive semidefinite.
These terms must be kept to obtain physically meaningful
results. The last contribution to Eq. (47), which is expensive
to evaluate, can be safely omitted.

If analytical derivatives of the matrix elements in Eq. (47)
are not available, they can be obtained using the standard
finite-difference formulas. It is particularly convenient to use
the turning points of the normal modes. Then

D(k)
x ≈

√
ωk

2
[Dx(

√
ωk ) − Dx(−√

ωk )], (48)

D(k,k)
x ≈ ωk[Dx(

√
ωk ) + Dx(−√

ωk ) − 2Dx(q0)], (49)

where x = l, r. Substituting into Eq. (47), we then obtain the
final working expression:

Gc,l,r (p)
ZPE FD= D†

l Dr +
∑

k

D†
l Wr,k +

∑
k

W †
l,kDr

+
∑

k

V †
l,kVr,k + 3

∑
k

W †
l,kWr,k +

∑
k �=m

W †
l,kWr,m,

(50)

Dx = D̂cp,0x(qc), (51)

Vx,k = 1√
8

[D̂†
cp,0x(q0 + √

ωk ) − D̂†
cp,0x(q0 − √

ωk )], (52)

Wx,k = 1
4 [D̂cp,0x(q0 + √

ωk ) + D̂cp,0x(q0 − √
ωk )

− 2D̂cp,0x(q0)]. (53)

Equation (50) can be applied to the situation where the nuclear
motion after ionization is negligible. In this case, the charac-
teristic geometry qc and the neutral equilibrium geometry q0

coincide. If the characteristic geometry does not coincide with
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the neutral equilibrium geometry, Eq. (50) still guarantees that
the matrix element Gc,l,r remains positive semidefinite.

IV. SUMMARY AND OUTLOOK

In this work, we develop the formal theory of RABBITT
photoionization spectra in molecular systems. Our most gen-
eral result is given by Eqs. (17), (25), and (29)–(31). It
includes the effects of the nuclear motion in the initial (neu-
tral) and final (cation) state (including vibrational heating by
the IR field and IR-induced electronic transitions); coordinate
dependence of the two-electron photoionization matrix ele-
ments; and effects of the finite pulse duration. It neglects the
possibility of collisional (de)excitation of the final ion, as well
as of the shake-off and shake-up processes. The possibility
of multiphoton transitions due to the XUV or absorption-
emission of multiple IR photons by the ionized electron are
also neglected. The vibronic dynamics, including dynamics at
conical intersections, is treated fully, both in the initial and the
final molecular states.

We further analyze important special cases. We demon-
strate that in the lowest-order, Condon approximation, nuclear
motion does not introduce additional time delays in the
RABBITT spectra. The photoelectron energy profile in
this approximation coincides with the vibrational profile in
one-photon ionization spectra. In contrast, the zero-point mo-
tion leads to nonvanishing phase contributions, and therefore
time delays. We develop numerically tractable expressions

for the ZPE contributions, both for the case where analytical
derivatives of the electronic matrix elements are available and
for the finite-difference evaluation.

The expressions we have developed can be readily eval-
uated by combining the existing molecular photoionization
codes, utilizing fixed-nuclei approximation, ab initio potential
energy surfaces, and molecular vibronic-dynamics simula-
tions. We envision routine applications of our theory to
molecules with tens and potentially hundreds of vibrational
degrees of freedom, which are entirely out of reach for
brute-force, coupled electron-nuclear simulations. Given the
number and the extent of the approximations, necessary to
obtain numerically tractable formulation of the theory, only a
comparison with experiment can serve as the ultimate arbiter
of its validity. Work in this direction is currently underway,
with the initial results reported elsewhere [24].
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APPENDIX A: DERIVATION OF EQ. (12)

Starting with Eq. (9) of the main text, we obtain [14,22,23]

∣∣� (1)
i (t )

〉 = −i
∫ t

t0

dt ′e−iEI (t−t ′ )Ûi(t, t ′; EI )V̂i(t
′)e−iEN (t ′−t0 )ÛIR(t ′, t0; EN ) |� (0)(t0)〉 (9)

= −i
∫ t

t0

dt ′e−iEI (t−t ′ )Ûi(t, t ′; EI )
1

2
μ̂i fi(t

′)e−i�it ′−i�i e−iEN (t ′−t0 )ÛIR(t ′, t0; EN ) |� (0)(t0)〉

= − i

2
e−i�i+iEN t0

∫ t

t0

dt ′e−iEI t ei(EI −EN −�i )t ′
fi(t

′)Ûi(t, t ′; EI )μ̂iÛIR(t ′, t0; EN ) |� (0)(t0)〉

≈ − i

2
e−i�i+iEN t0

∫ t

t0

dt ′e−iEI t ei(EI −EN −�i )t ′
fi(t

′)ÛIR(t, t ′; EI )μ̂iÛIR(t ′, t0; EN ) |� (0)(t0)〉 , (A1)

where EN and EI are, respectively, characteristic energies of
the system before and after XUV photon absorption, t0 is
before the start of the XUV pulse, and t is past the end
of the pulse. In the last line, we replaced Ûi(t, t ′; EI ) with
ÛIR(t, t ′; EI ), thus neglecting the possibility of absorbing ad-
ditional XUV photons.

We now use the ansatz (10) for the initial wave function,
and assume that the set of electronic states ψa is complete
with respect to the action of the propagator ÛIR. One can then
define an identity operator 1̂N , which can be inserted between
operators μ̂i and ÛIR(t ′, t0; EN ) in Eq. (A1):

1̂N =
∑

a

|ψa(r; q)〉 〈ψa(r; q)| , (A2)

where the brackets are understood to imply integration over
electronic coordinates r alone. The result is∣∣� (1)

i (t )
〉 = − i

2
e−i�i+iEN t0

∑
a

∫ t

t0

dt ′e−iEI t ei(EI −EN −�i )t ′
fi(t

′)

× ÛIR(t, t ′; EI )μ̂i |ψa(r; q)〉 |χa(q, t ′)〉 , (A3)

|χa(q, t ′)〉 =
∑

b

ûab(t ′, t0; EN ) |χb(q, t0)〉 , (A4)

ûab(t ′, t0; EN ) = 〈ψa(r; q)|ÛIR(t ′, t0; EN )|ψb(r; q)〉 , (A5)

where we have chosen to introduce vibrational propagator
ûab(t ′, t0; EN ).

The quantity |χa(q, t ′)〉 is to be understood as a vibrational
wave packet on an electronic surface a at time t ′. We assume
that efficient means of propagating these wave packets are
available to us. In the most common special case, where
|� (0)(t0)〉 is an eigenstate of the field-free Hamiltonian with
energy EN , and the effects of the IR field on the initial neutral
wave function can be neglected, Eq. (A4) reduces simply to

|χa(q, t ′)〉 G.S.= |χa(q, t0)〉 . (A4a)

Analogously to Eq. (A2), we introduce identity-resolution
operator 1̂C in the ion space, using wave functions defined in
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Eq. (11) of the main text:

1̂C =
∑

c

∫
dk |ψck (r; q)〉 〈ψck (r; q)| . (A6)

Inserting 1̂C into Eq. (A3) between ÛIR and μ̂i and rearranging
the terms, we obtain∣∣� (1)

i (t )
〉 = − i

2
e−i�i+iEN t0

∑
a,c

∫
dk

∫ t

t0

dt ′e−iEI t ei(EI −EN −�i )t ′

× fi(t
′)ÛIR(t, t ′; EI ) |ψck (r; q)〉 μ̂ck,a |χa(q, t ′)〉 ,

(A7)

where operator μ̂ck,a has been defined by Eq. (15) of the main
text.

We can now introduce yet another identity-resolution op-
erator 1̂C′ , in the form

1̂C′ =
∑

d

∫
d p |ψd p(r; q)〉 〈ψd p(r; q)| , (A8)

where the (discrete) index d and general parameter p are
understood as the labels of the final state of the photoion
and photoelectron, respectively. Inserting 1̂C′ to the left of the
operator ÛIR in Eq. (A7) and rearranging, we obtain∣∣� (1)

i (t )
〉 = − i

2
e−i�i+iEN t0

∑
d

∫
d p e−iEI t |ψd p(r; q)〉

× |χd pi(q, t )〉 , (12)

|χd pi(q, t )〉 =
∑
a,c

∫
dk

∫ t

t0

dt ′ei(EI −EN −�i )t ′

× fi(t
′)ûd p,ck (t, t ′; EI )μ̂ck,a |χa(q, t ′)〉 , (13)

ûd p,ck (t, t ′; EI ) = 〈ψd p(r; q)| ÛIR(t, t ′; EI ) |ψck (r; q)〉 . (14)

In Eq. (13), χd pi(q, t ) is the final amplitude of the ion state d
and photoelectron state p, at nuclear coordinates q and time
t , generated by the XUV field Fi. Propagator (14) describes
evolution of the initially prepared ionized (or excited) state
under the influence of the IR field. We note that the meaning
of the phase factor e−iEI t is subtly different between Eqs. (A7)
and (12). In Eq. (A7), it is a global overall phase, while
in Eq. (12) EI is permitted to be p dependent. This change
amounts to a gauge transformation of |χd pi(q, t )〉, which is
compensated for by the counteracting transformation of the
ûd p,ck propagator in Eq. (13).

APPENDIX B: DERIVATION OF EQ. (21)

We evaluate the propagator of Eq. (18), treating the IR field
as a perturbation to the zeroth-order Hamiltonian:

ÛIR(t, t ′; Ek ) |ψk (r; q)〉 = ������������������Û0(t, t ′; Ek ) |ψk (r; q)〉

− i
∫ t

t ′
dt ′′ÛIR(t, t ′′; Ek )V̂IR,

× Û0(t ′′t ′; Ek ) |ψk (r; q)〉 , (B1)

where Ek = EI − EC is the “excess” characteristic energy of
the state |ψkc〉 relative to EC . The first term on the right-hand
side of Eq. (B1) preserves k, leading to the δp−k contribution
upon substitution into Eq. (18). Because we are interested in
the RABBITT sidebands, rather than in the main harmonic
line, we are permitted to drop this contribution. Then, substi-
tuting V̂IR from Eq. (3), we obtain, separately for emission (+)
and absorption (−) of an IR photon,

ûp,k,±(t, t ′; Ek )
s.b.= − i

2

∫ t

t ′
dt ′′ fIR(t ′′)e±iωt ′′ 〈ψp(r; q)| ÛIR(t, t ′′; Ek )μ̂IRÛ0(t ′′, t ′; Ek ) |ψk (r; q)〉

≈ − i

2

∫ t

t ′
dt ′′ fIR(t ′′)e±iωt ′′ 〈ψp(r; q)| Û0(t, t ′′; Ek )μ̂IRÛ0(t ′′, t ′; Ek ) |ψk (r; q)〉

= − i

2

∫ t

t ′
dt ′′ fIR(t ′′)e±iωt ′′

ei(Ek−Ep)(t−t ′′ ) 〈ψp(r; q)| Û0
(
t, t ′′; Ep

)
μ̂IRÛ0(t ′′, t ′; Ek ) |ψk (r; q)〉

= − i

2
e−i(Ep−Ek )t

∫ t

t ′
dt ′′ fIR(t ′′)ei(Ep−Ek±ω)t ′′ 〈ψp(r; q)| μ̂IR |ψk (r; q)〉

= − i

2
e−i(Ep−Ek )t 〈ψp(r; q)| μ̂IR |ψk (r; q)〉

∫ t

t ′
dt ′′ fIR(t ′′)ei(Ep−Ek±ω)t ′′

, (B2)

where in the second line, we have neglected the possibility of absorbing the second IR photon. In the third line, we shifted the
energy origin of the left-most propagator and rearranged the terms. In the fourth line, we have used the assumption that |ψk〉 are
eigenfunctions of the field-free Hamiltonian with energy Ek , so that

Û0(t2, t1; Ek ) |ψk (r; q)〉 = |ψk (r; q)〉 , (B3)

and moved the IR-dipole matrix element outside of the integral.
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To progress further, we now evaluate the dt ′′ integral in Eq. (B2) by parts, using the adiabatic turn-on procedure (see §42 of
Ref. [25]):∫ t

t ′
dt ′′ fIR(t ′′)eλt ′′

ei(Ep−Ek±ω)t ′′ =
∫ t

t ′
dt ′′ fIR(t ′′)

d

dt ′′

(
−i

eλt ′′+i(Ep−Ek±ω)t ′′

(Ep − Ek ± ω) − iλ

)

= −i fIR(t ′′)
eλt ′′+i(Ep−Ek±ω)t ′′

(Ep − Ek ± ω) − iλ

∣∣∣∣∣
t

t ′
+ i

∫ t

t ′
dt ′′

�
�

���
�

��

dfIR(t ′′)
dt ′′

eλt ′′+i(Ep−Ek±ω)t ′′

(Ep − Ek ± ω) − iλ

≈ i fIR(t ′)
eλt ′+i(Ep−Ek±ω)t ′

(Ep − Ek ± ω) − iλ
λ→+0= i fIR(t ′)

ei(Ep−Ek±ω)t ′

(Ep − Ek ± ω) − i0+ , (B4)

where we have used the slowly varying envelope approximation to neglect the time derivative of the envelope fIR, and assumed
that the observation time t is past the end of the IR pulse. Inserting Eq. (B4) into Eq. (B2), we then obtain our final expression
(21) for ûp,k,±.

APPENDIX C: DERIVATION OF EQ. (22)

Substituting Eqs. (21) and (16) into Eqs. (12) and (13), we obtain∣∣� (2)
i± (t )

〉 = − i

2
e−i�i+iEN t0

∑
d

∫
d p e−i(EC+Ep)t |ψd p(r; q)〉 e+i(Ep−Ek )t |χd pi±(q, t )〉 ,

= − i

2
e−i�i−iECt+iEN t0

∑
d

∫
d p e−iEpt |ψd p(r; q)〉 |χ̃d pi±(q, t )〉 ,

|χ̃d pi±(q, t )〉 = e+i(Ep−Ek )t
∑
a,c

∫
dk

∫ t

t0

dt ′ei(EC+Ek−EN −�i )t ′
fi(t

′)
1

2
e−i(Ep−Ek )t fIR(t ′) 〈ψp(r; q)| μ̂IR |ψk (r; q)〉

× ei(Ep−Ek±ω)t ′

(Ep − Ek ± ω) − i0+ ûd,c(t, t ′; EC )μ̂ck,a |χa(q, t ′)〉

= 1

2

∑
a,c

∫ t

t0

dt ′ei(Ep+EC−EN −�i±ω)t ′
fi(t

′) fIR(t ′)ûd,c(t, t ′; EC )
∫

dk
〈ψp(r; q)| μ̂IR |ψk (r; q)〉 μ̂ck,a

(Ep − Ek ± ω) − i0+ |χa(q, t ′)〉

= 1

2

∑
a,c

∫ t

t0

dt ′e−iεcp,a±t ′
fi(t

′) fIR(t ′)ûd,c(t, t ′; EC )D̂cp,a±(q) |χa(q, t ′)〉 ,

where εcp,a±, D̂cp,a±(q), and μ̂p,ck (q) are given by Eqs. (24), (25), and (26) of the main text, respectively.

APPENDIX D: DERIVATION OF EQS. (30) AND (31)

From Eq. (22), the individual contributions Il,r (p) in Eq. (29) are given by

Il,r (p) = 〈
�

(2)
l (t )|p′〉 〈p|� (2)

r (t )
〉 ∣∣

p′→p

=
(

− i

2
e−i�l −iECt+iEN t0

∑
c

e−iEp′ t |ψcp′ (r; q)〉 |χ̃cp′l (q, t )〉
)†

×
(

− i

2
e−i�r−iECt+iEN t0

∑
d

e−iEpt |ψd p(r; q)〉 |χ̃d pr (q, t )〉
)∣∣∣∣∣

p′→p

= 1

4
ei(�l −�r )

∑
cd

〈χ̃cp′l (q, t )| 〈ψcp′ (r; q)| ei(Ep′−Ep)t |ψd p(r; q)〉 |χ̃d pr (q, t )〉
∣∣∣∣∣

p′→p

= 1

4
ei(�l −�r )

∑
cd

〈χ̃cp′l (q, t )| δcdδ

( �p′ − �p
2π

)
|χ̃d pr (q, t )〉

∣∣∣∣∣
p′→p

= 1

4
δ

( �p′ − �p
2π

)
ei(�l −�r )

∑
d

〈χ̃d pl (q, t )|χ̃d pr (q, t )〉 , (D1)
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where l, r = 1−, 2+, and we assumed that the continuum functions are normalized to δ(
�p′− �p
2π

). Omitting the continuum
normalization factor (see the main text) and substituting |χ̃d pi±〉 from Eq. (23), we get

Il,r (p) = 1

4
ei(�l −�r )

∑
d

⎛
⎝1

2

∑
b,e

∫ t

t0

dt ′′e−iεep,bl t ′′
fl (t

′′) fIR(t ′′)ûd,e
(
t, t ′′; EC

)
D̂ep,bl (q) |χb(q, t ′′)〉

⎞
⎠

†

×
⎛
⎝1

2

∑
a,c

∫ t

t0

dt ′e−iεcp,art ′
fr (t ′) fIR(t ′)ûd,c(t, t ′; EC )D̂cp,ar (q) |χa(q, t ′)〉

⎞
⎠

= 1

16
ei(�l −�r )

∑
b,e,a,c

∫ t

t0

dt ′′
∫ t

t0

dt ′e+iεp(t ′′−t ′ ) fl (t
′′) fIR(t ′′) fr (t ′) fIR(t ′)

× 〈χb(q, t ′′)| D̂†
ep,bl (q)

(∑
d

ûe,d
(
t ′′, t ; EC

)
ûd,c(t, t ′; EC )

)
D̂cp,ar (q) |χa(q, t ′)〉 , (D2)

where we used εep,bl = εcp,ar = εp, which holds due to our
choice of �1 and �2, and ûd,e(t, t ′′; EC )† = ûe,d (t ′′, t ; EC ).

We further use the ion-state completeness assumption to
replace∑

d

ûe,d (t ′′, t ; EC )ûd,c(t, t ′; EC ) = ûe,c(t ′′, t ′; EC ), (D3)

yielding Eqs. (30) and (31) of the main text.

APPENDIX E: DERIVATION OF EQ. (47)

For a one-dimensional harmonic oscillator of unit effective
mass and force constant ω2

i ,(
−1

2

∂2

∂q2
i

+ 1

2
ω2

i q2
i − 1

2
ωi

)
χ0,i(qi ) = 0, (E1)

the ground-state eigenfunction is given by

χ0,i(qi ) =
(ωi

π

) 1
4
e− ωi

2 q2
i , (E2)

|χ0(q)〉 =
∏

i

χ0,i(qi ), (E3)

where qi is the displacement from the equilibrium position
q0,i and ωi is the vibrational quantum. The multidimensional
vibrational ground state is a product of χ0,i for all modes. The

first few nonzero moments of χ0,i, which are required below,
are given by ∫

dqiχ
2
0,i(qi ) = 1, (E4)∫

dqiq
2
i χ

2
0,i(qi ) = 1

2ωi
, (E5)∫

dqiq
4
i χ

2
0,i(qi ) = 3

4ω2
i

. (E6)

The classical turning points of the ground-state vibrational

wave function of mode i are found at qi = ±ω
− 1

2
i .

As long as matrix elements D̂ are sufficiently smooth, they
can be expanded in Taylor series:

D̂cp,0x ≈ D(0)
x +

∑
i

D(i)
x qi + 1

2

∑
i j

D(i, j)
x qiq j, (E7)

D(0)
x = D̂cp,0x(q0), (E8)

D(i)
x = ∂

∂qi
D̂cp,0x(q0), (E9)

D(i, j)
x = ∂2

∂qi∂q j
D̂cp,0x(q0), (E10)

Inserting Eqs. (E3) and (E7) in Eq. (46), we obtain

Gc,l,r (p)
ZPE=

∫∫∫ +∞

−∞

∏
k

dqk

∏
i, j

(ωi

π

) 1
4
e− ωi

2 q2
i

(ω j

π

) 1
4
e− ω j

2 q2
j

×
(

D(0)
l +

∑
k

D(k)
l qk + 1

2

∑
ko

D(k,o)
l qkqo

)†(
D(0)

r +
∑

m

D(m)
r qm + 1

2

∑
mn

D(m,n)
r qmqn

)

=
∫∫∫ +∞

−∞

∏
k

dqk

∏
i, j

(ωi

π

) 1
4
e− ωi

2 q2
i

(ω j

π

) 1
4
e− ω j

2 q2
j

×
[(

D(0)
l

)†
D(0)

r + (
D(0)

l

)† 1

2

∑
k

D(k,k)
r q2

k +
∑

k

(
D(k)

l

)†
D(k)

r q2
k + 1

2

∑
k

(
D(k,k)

l

)†
D(0)

r q2
k
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+ 1

4

∑
k

(
D(k,k)

l

)†
D(k,k)

r q4
k + 1

4

∑
k �=m

(
D(k,k)

l

)†
D(m,m)

r q2
k q2

m + 1

2

∑
k �=m

(
D(k,m)

l

)†
D(k,m)

r q2
k q2

m

]

= (
D(0)

l

)†
D(0)

r

+
∑

k

1

4ωk

[(
D(0)

l

)†
D(k,k)

r + 2
(
D(k)

l

)†
D(k)

r + (
D(k,k)

l

)†
D(0)
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where we used parity arguments to drop vanishing contributions containing odd powers of any of the qi coordinates.
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